Integration by parts

How did loving the ground-up toenails of bisexuals get an interior designer to take up geology? Simple, he went from noting decor to what the core denotes by being into grated bi-parts.

I don’t really get why this XKCD is funny.

But here is a picture explaining integration by parts:

The area of the entire rectangle is uv, and it is made of two parts we integrate, so

 

uv = \int \!u\, \text{d}v + \int\! v\,\text{d}u

 

and therefore

 

\int \! u \,\text{d}v = uv - \int\! v \,\text{d}u

 

Also, take \text{d}(uv) = \text{d}(\int \!u \,\text{d}v + \int \!v\,\text{d}u) and you find

 

\text{d}(uv) = u \,\text{d}v + v\,\text{d}u,

 

which is the product rule.

About these ads

Tags: , ,

3 Responses to “Integration by parts”

  1. Anonymous Says:

    XKCD is vary rarely funny.

  2. nicolas Says:

    XKCD is vary rarely funny.

  3. Ψε Says:

    Nice visualisation! Always had this intuition, but couldn’t actually think of how simple this geometric intuition is.

Leave a Reply

Fill in your details below or click an icon to log in:

WordPress.com Logo

You are commenting using your WordPress.com account. Log Out / Change )

Twitter picture

You are commenting using your Twitter account. Log Out / Change )

Facebook photo

You are commenting using your Facebook account. Log Out / Change )

Google+ photo

You are commenting using your Google+ account. Log Out / Change )

Connecting to %s


Follow

Get every new post delivered to your Inbox.

Join 57 other followers

%d bloggers like this: